محتويات
أهم قوانين المحيط والمساحة والحجم
- قوانين المحيط: يمكن إيجاد المحيط لأشهر الأشكال الهندسية ثنائية الأبعاد باستخدام القوانين الآتية:[١]
- محيط المربع = 4×طول ضلع المربع.
- محيط المستطيل = 2×(طول المستطيل عرض المستطيل).
- محيط المثلث = مجموع أطوال أضلاعه.
- محيط الدائرة = 2×π×نصف قطر الدائرة.
لمزيد من المعلومات حول المحيط يمكنك قراءة المقالات الآتية: قانون محيط المربع، ما محيط متوازي الاضلاع، قانون محيط المعين، قانون محيط شبه المنحرف، قانون محيط المستطيل، ما هو قانون محيط الدائرة.
- قوانين المساحة: يمكن إيجاد المساحة لأشهر الأشكال الهندسية ثنائية الأبعاد باستخدام القوانين الآتية:[٢]
- مساحة المربع = مربع طول الضلع
- مساحة المستطيل = الطول×العرض
- مساحة المثلث = 1/2×طول القاعدة×الارتفاع.
- مساحة الدائرة = π×(نصف قطر الدائرة).²
- مساحة شبه المنحرف = ((طول القاعدة العلوية طول القاعدة السفلية)×الارتفاع)/2.
لمزيد من المعلومات حول مساحة الأشكال ثنائية الأبعاد يمكنك قراءة المقالات الآتية: ما هي مساحة المربع، قانون مساحة متوازي الأضلاع، قانون حساب مساحة المعين، مساحة الشبه المنحرف، كيف نحسب مساحة المستطيل، كيف أحسب مساحة الدائرة، ، كيف نحسب المساحة.
- يمكن إيجاد المساحة لمجموعة من أشهر الأشكال الهندسية ثلاثية الأبعاد باستخدام القوانين الآتية:[٢]
- مساحة سطح المكعب = 6×طول ضلع المكعب².
- مساحة سطح الأسطوانة = 2×π×نصف قطر قاعدة الأسطوانة×ارتفاع الأسطوانة.
- مساحة سطح المخروط = π×نصف قطر قاعدة المخروط×الارتفاع الجانبي للمخروط
- مساحة سطح الكرة = 4×π×نصف قطر الكرة²
لمزيد من المعلومات حول مساحة الأشكال ثلاثية الأبعاد يمكنك قراءة المقالات الآتية: قانون مساحة سطح الكرة، قانون مساحة متوازي المستطيلات، قانون مساحة المخروط، مساحة سطح الهرم، قانون مساحة الإسطوانة، مساحة سطح المنشور الرباعي.
- قوانين الحجم: يمكن إيجاد الحجم لأشهر الأشكال الهندسية ثلاثية الأبعاد باستخدام القوانين الآتية:[٢][٣]
- حجم الأسطوانة = مساحة القاعدة×الارتفاع
- حجم المخروط = (مساحة القاعدة×الارتفاع)/3.
- حجم الدائرة = (4×π×نصف قطر الدائرة³)/3.
- حجم المكعب = طول ضلع المكعب³.
- حجم متوازي المستطيلات = الطول×العرض×الارتفاع.
لمزيد من المعلومات حول حجم الأشكال ثلاثية الأبعاد يمكنك قراءة المقالات الآتية: قانون حجم الكرة في الرياضيات، قانون حجم متوازي المستطيلات، قانون حجم المكعب، قانون حساب حجم المخروط، كيفية حساب حجم الاسطوانة.
أهم قوانين حساب المثلثات
- هناك مجموعة من القوانين الخاصة بعلم المثلثات، ومن أشهرها:[٣]
- جيب الزاوية = جا (الزاوية) = الضلع المقابل للزاوية/الوتر.
- جيب تمام الزاوية = جتا (الزاوية) = الضلع المجاور للزاوية/الوتر.
- ظل الزاوية = ظا (الزاوية) = الضلع المقابل للزاوية/ الضلع المجاور للزاوية.
لمزيد من المعلومات حول حساب المثلثات يمكنك قراءة المقال الآتي: قوانين حساب المثلثات.
- أهم المتطابقات المثلثية (حيث: س تمثل قياس الزاوية):[٣]
- جا²(س) جتا²(س) =1.
- ظا (س) = جا(س)/جتا(س).
- 1 ظا(س)² = 1/جتا²(س).
- قانون جيب التمام (قانون الجتا): إذا كان هناك مثلث مهما اختلف نوعه أطوال أضلاعه أ، ب، جـ فإن طول الضلع أ يعطى بالعلاقة الآتية:[٣]
- أ² = ب² جـ²- 2×ب×جـ×جتا أَ، حيث أَ هي الزاوية المقابلة للضلع أ.
لمزيد من المعلومات حول قانون جيب التمام يمكنك قراءة المقال الآتي: ما هو قانون جيب التمام.
- قانون الجيب : مثلث أطوال أضلاعه أ، ب، جـ فإنّ: جا(أَ)/(أ) = جا(بَ)/ب = جا(جـَ)/جـ، حيث:[٣]
- أَ: الزاوية المقابلة للضلع أ.
- بَ: الزاوية المقابلة للضلع ب.
- جـَ: الزاوية المقابلة للضلع جـ.
لمزيد من المعلومات حول قانون الجيب يمكنك قراءة المقال الآتي: قانون الجيب في الرياضيات.
- قوانين ضعف الزاوية؛ حيث س تمثل قياس الزاوية:[٣]
- جا (2س) = 2×جا(س)×جتا(س).
- جتا(2س)= جتا²(س) - جا²(س).
- ظا(2س)= (2 × ظا(س))/(1 - ظا²(س)).
لمزيد من المعلومات حول قانون ضعف الزاوية يمكنك قراءة المقال الآتي: قانون ضعف الزاوية.
أهم قوانين اللوغارتيمات
هناك مجموعة من القوانين الخاصة باللوغاريتم، ومنها:[٤]
- إذا كان أس = م؛ فإنّ لوأ م = س.
- لوأ 1 = 0.
- لوأ أ = 1.
- لوأ (م×ن) = لوأ م لوأ ن.
- لوأ (م/ن) = لوأ م - لوأ ن.
- لوأ م ن = ن×لوأ م.
- لوأ م = لوب م×لوأ ب.
- لوب أ×لوأ ب = 1.
لمزيد من المعلومات حول اللوغاريتمات يمكنك قراءة المقال الآتي: خصائص اللوغاريتمات.
أهم قوانين الجذور
هناك مجموعة من القوانين المتعلقة بالجذور، ومنها:[٥]
- (أ×ب)√ن = أ√ن × ب√ن، حيث دليل الجذر هو ن، وهذا يتضمن جميع الأعداد.
- أ√ن × ب√م = (أ م×ب ن)√ م×ن
- (أ/ب)√ن = أ√ن / ب√ن، بشرط أن تكون ب لا تساوي صفر.
- ( أ√ن) ن= أ.
- أم√ن = أ (م/ن).
- ( أ√ن )م= أم√ن.
أهم قوانين الأسس
هناك مجموعة من القوانين المتعلقة بالأسس، وهي:[٣]
- في حالة الضرب:
- أ م×أ ن = أ (م ن)
- أ م×ب م = (أ×ب) م
- في حالة القسمة:
- أم÷أن = أ (م-ن)
- أ م÷ب م = (أ÷ب)م
- الأس المرفوع لأس آخر:
- (أ م)ب = أ (م×ب)
- الأس المرفوع لقوة تساوي صفر:
- أ 0 = 1
- الأس السالب:
- أ -ن = (1/أ)ن
- الأس المرفوع لكسر:
- أ (ب/جـ) = أب√جـ
لمزيد من المعلومات حول الأسس والقوى يمكنك قراءة المقال الآتي: خواص القوى في الرياضيات.
أهم قوانين الجمع والضرب
فيما يلي أهم القوانين المتعلقة بعملية الجمع؛ حيث أ، ب، جـ تمثل أعداداً حقيقية:[٦]
- العنصر المحايد لعملية الجمع: ويساوي صفر، وهذا يعني أن إضافة أي عدد للعدد صفر يعطي العدد نفسه؛ أي أ 0 = أ.
- النظير أو المعكوس الجمعي: وهو معكوس العدد الذي ينتج عن إضافته للعدد ناتجاً يساوي صفر؛ أي النظير أو المعكوس الجمعي للعدد أ هو -أ؛ وذلك لأنّ (أ) (-أ) = 0.
- الخاصية التجميعية: وتعني أن (أ ب) جـ تساوي أ (ب جـ)؛ أي أن تغيير ترتيب الأقواس لا يؤثر على نتيجة عملية الجمع.
- الخاصية التبديلية لعملية الجمع: وتعني أنّ أ ب = ب أ؛ أي تغيير ترتيب الأعداد لا يؤثر على ناتج عملية الجمع.
- ملاحظة: عملية الطرح (أ-ب) تعني: أ (-ب).
لمزيد من المعلومات حول عملية الجمع يمكنك قراءة المقالات الآتية: خصائص الجمع، ماهي خصائص الجمع والطرح.
فيما يلي أهم القوانين المتعلقة بعملية الضرب؛ حيث أ، ب، جـ تمثل أعداداً حقيقية:[٦]
- العنصر المحايد لعملية الضرب: يساوي 1، وهذا يعني أن ضرب أي عدد في العدد 1 يُعطي العدد نفسه؛ أي أنّ: أ×1 = أ.
- النظير أو المعكوس الضربي: يتمثّل بمقلوب العدد، وهذا يعني أن النظير الضربي للعدد أ يساوي 1/أ بشرط أن تكون أ لا تساوي صفراً؛ وذلك لأن الإجابة في هذه الحالة تصبح قيمة غير معرّفة، وحاصل ضرب العدد بمعكوسه يُطعي دائماً القيمة 1؛ أي أنّ: أ×(1/أ) = 1.
- الضرب في العدد صفر: إنّ ضرب أي عدد في صفر يُعطي إجابة صفر؛ أي أنّ: أ×0 = 0.
- الخاصية التجميعية: وهذا يعني أنّ: (أ×ب)×جـ تساوي أ×(ب×جـ)؛ أي أنّ تغيير ترتيب الأقواس لا يؤثّر على نتيجة عملية الضرب.
- الخاصية التبديلية: وهذا يعني أنّ: أ×ب = ب×أ؛ أي تغيير ترتيب الأعداد لا يؤثر على ناتج عملية الضرب.
- قانون التوزيع: وهو ينصّ على أنّ: أ×(ب جـ) = أ×ب أ×جـ.
- ملاحظة: يمكن التعبير عن عملية القسمة من خلال عملية الضرب كما يلي: أ/ب = أ×(1/ب).
لمزيد من المعلومات حول عملية الضرب يمكنك قراءة المقالات الآتية: خصائص عملية الضرب، قانون التوزيع في الضرب.
فيما يلي أهم القوانين المتعلقة بعملية ضرب، وجمع، وطرح، وقسمة الكسور:[٧]
- جمع الكسور: أ/ب جـ/د = (أ×د ب×جـ)/(ب×د).
- طرح الكسور: أ/ب - جـ/د = (أ×د - ب×جـ)/(ب×د).
- ضرب الكسور: أ/ب × جـ/د = (أ×جـ)/(ب×د).
- قسمة الكسور: أ/ب ÷ جـ/د = (أ×د)/(ب×جـ).
قوانين مهمّة مختلفة
فيما يلي بعض القوانين المهمة التي تُستخدم بشكل كبير في علم الرياضيات:
- قوانين حساب الفائدة: يمكن حساب الفائدة حسب نوعها باستخدام القوانين الآتية:[٨]
- قانون الفائدة المركّبة: م=ب×(1 ف/ت)ن×ت، حيث:
- ب: المبلغ الأصلي الذي تم اقتراضه، أو استثماره.
- م: المبلغ بعد إضافة الفائدة المركبة إليه بعد مرور مدة القرض، أو الاستثمار.
- ف: نسبة الفائدة المركبة السنوية، ويجب كتابتها على شكل عدد عشري.
- ت: عدد مرات تحصيل الفائدة في السنة الواحدة.
- ن: مدة القرض، أو الاستثمار بالسنوات.
- قانون الفائدة البسيطة: قيمة الفائدة البسيطة = المبلغ المقترض×نسبة الفائدة السنوية×عدد السنوات.[٩]
لمزيد من المعلومات حول حساب الفائدة يمكنك قراءة المقالات الآتية: كيفية احتساب الفائدة المركبة، كيف تحسب فائدة البنك.
- أهم قوانين الإحصاء: تُستخدم هذه القوانين لمعرفة مدى ابتعاد القيم في عينة ما عن القيمة الصحيحة، أو عن بعضها البعض، وفيما يلي أهم القوانين المستخدمة في علم الإحصاء:[١٠]
- الوسط الحسابي = مجموع القيم/عددها.
- الانحراف المعياري = ((القيمة - الوسط الحسابي)²∑/(عدد القيم-1))√
- المدى = أعلى قيمة - أقل قيمة.
- التباين = مربع الانحراف المعياري.
لمزيد من المعلومات حول الإحصاء، والوسط، والتباين يمكنك قراءة المقالات الآتية: تعريف الإحصاء، كيفية حساب المتوسط الحسابي، قانون التباين، كيفية حساب الانحراف المعياري.
- قانون نظرية فيثاغورس: يُستخدم هذا القانون في المثلث قائم الزاوية، وينص على أنّ: مربع الوتر يساوي مجموع مربعي ضلعي القائمة أي: الوتر² = ضلع القائمة الأول² ضلع القائمة الثاني²، ويشكّل أحد ضلعي القائمة قاعدة المثلث، أما الضلع الآخر فيتمثل بالضلع الآخر العمودي عليها.[١١]
لمزيد من المعلومات حول نظرية فيثاغورس يمكنك قراءة المقال الآتي: قانون نظرية فيثاغورس.
- قانون ميل المستقيم: يعبّر الميل عن مدى انحراف الخط المستقيم عن محور السينات الموجب، ويمكن التعبير عنه باستخدام مجموعة من القوانين، وهي:[٧]
- الميل = ظاθ؛ حيث θ تمثّل الزاوية المحصورة بين الخط المستقيم، ومحور السينات الموجب.
- لأي نقطتين إحداثياتهما (س1، ص1)، و (س2، ص2) تقعان على الخط المستقيم فإنّ الميل = فرق الصادات/فرق السينات أي؛ الميل= (ص2-ص1) / (س2-س1).
- المعادلة التي تكون على صورة: ص=أس ب، فإنّ الميل يساوي معامل س؛ أي: الميل=أ.
لمزيد من المعلومات حول ميل المستقيم يمكنك قراءة المقال الآتي: قانون ميل الخط المستقيم.
- قانون المسافة بين نقطتين: يمكن إيجاد المسافة بين نقطتين إحداثياتهما (س1، ص1)، و(س2، ص2) باستخدام القانون الآتي: المسافة بين نقطتين = [(س2-س1)² (ص2-ص1)²]√
- أهم قوانين التكامل: فيما يلي أهم القوانين التي تُستخدم بكثرة في علم التكامل:[٧]
- ∫ س ن ءس = (س(ن 1)/ (ن 1)) جـ؛ حيث جـ هو أي عدد ثابت، ويُكتب دائماً إذا كان التكامل غير محدود، ءس تعني أن التكامل بدلالة المتغير س، وتقرأ (دال السين).
- ∫ (1/ س ن) ءس = -1/((ن-1)×س (ن-1)) جـ.
- ∫(1/س) ءس = لوس جـ
- ∫هـ س ءس = هـ س جـ، حيث هـ هو العدد النيبيري وهو عدد ثابت.
- ∫ أس ءس = أس/ لوأ جـ.
- ∫جاس ءس = -جتاس جـ، حيث س تمثل أي زاوية.
- ∫ جتاس ءس = جاس جـ، حيث س تمثل أي زاوية.
- أهم قوانين الاشتقاق: إن الاشتقاق يمثّل العملية العكسية للتكامل، وفيما يلي أهم القوانين المستخدمة في علم الاشتقاق:[١٢]
- اشتقاق الاقتران الثابت (ص= جـ) يساوي 0؛ أي أنّ: ءص/ءس (جـ) = 0، وهذه الإشارة (ءص/ءس) تدل على عملية الاشتقاق، وتعني أن اشتقاق الاقتران ص بدلالة س، وتُقرأ (دال الصاد على دال السين).
- اشتقاق الاقتران الخطي مثل ق (س)= س، قَ(س)= 1، أو بشكل عام اشتقاق الاقتران الخطي يساوي معامل س.
- اشتقاق الاقتران التربيعي مثل: ق(س) = س²، قَ(س)= 2س.
- اشتقاق الجذر التربيعي مثل: ق(س)= (س)√، قَ(س) = (1/2)×س(-1/2).
- اشتقاق الأس مثل:
- ق(س)=هـ س، قَ(س)= هـ س.
- ق (س) = أس، قَ(س)= لوهـ أ×أس.
- اشتقاق اللوغاريتم مثل:
- ق(س)= لوهـ (س)، قَ(س)= 1/س.
- ق(س)= لوأ (س)، قَ(س)= 1/(س×لوهـ (أ)).
- اشتقاق الاقترانات المثلثية (جا، جتا، ظا)؛ حيث س تمثل أي زاوية:
- ق(س)= جاس، قَ(س) = جتاس.
- ق(س)= جتاس، قَ(س) = -جاس.
- ق(س)= ظاس، قَ(س) = قا²س.
- اشتقاق الأس:
- ق(س)= س ن، قَ (س) = ن×س(ن-1)؛ حيث ن: هي ن تمثل الأس.
المراجع
- ↑ "Perimeter Formulas", www.math.com, Retrieved 16-6-2020. Edited.
- ^ أ ب ت "Math Formulas", byjus.com, Retrieved 16-6-2020. Edited.
- ^ أ ب ت ث ج ح خ "List of math formulas", www.matematica.pt, Retrieved 16-6-2020. Edited.
- ↑ "Basic Math Formulas", www.math-only-math.com, Retrieved 16-6-2020. Edited.
- ↑ " Math Formulas ", www.dxl.co.za, Retrieved 16-6-2020 (page 25). Edited.
- ^ أ ب "Basic Identities", www.math.com, Retrieved 16-6-2020. Edited.
- ^ أ ب ت "MATH FORMULAS", www.onlinemath4all.com, Retrieved 16-6-2020. Edited.
- ↑ "The Compound Interest Equation", www.math.com, Retrieved 17-6-2020. Edited.
- ↑ "Interest (An Introduction)", www.mathsisfun.com, Retrieved 17-6-2020. Edited.
- ↑ "Maths Formula Sheets", www.cuemath.com, Retrieved 17-6-2020.
- ↑ "Pythagorean Theorem Formula", byjus.com, Retrieved 17-6-2020. Edited.
- ↑ "Derivative Rules", www.mathsisfun.com, Retrieved 17-6-2020. Edited.